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Quintic Equations Forumlae to frighten

Formulae to solve polynomials

The Quadratic Formula (Babylon . . . al-Khwārizmı̄ c. 830)
If x2 + bx + c = 0, then

x =
−b ±

√
b2 − 4c

2
.
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The Cubic Formula (Cardano, Tartaglia 1545)
If x3 + bx2 + cx + d = 0, then
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. . . where p =
3c − b2

3
and q =

2b3 − 9bc + 27d
27

.
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Quintic Equations Forumlae to frighten

Formulae to solve polynomials

The Quartic Formula (Ferrari 1545)
If x4 + bx3 + cx2 + dx + e = 0, then

x = ±
√

u
2
±
√
−u

2
− p

2
− ±q

2
√

2u
+

b
4
,
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b
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,

where p =
16c − 6b2

16
, q =

8d − 4bc + b3

8
, r =

256e − 64bd + 16b2c − 3b4

256
,
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256
,

. . . and u is a solution of the cubic equation

8u3 + 8pu2 + (2p2 − 8r)u − q2 = 0
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. . . and provided q 6= 0!
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Quintic Equations Forumlae to frighten

A Quintic Formula?

So what if we have a quintic equation

x5 + bx4 + cx3 + dx2 + ex + f = 0? (1)

Theorem (Abel 1824)
‘There is no quintic formula, and there never will be.’

This does NOT mean that quintic equations have no solutions!

The quintic equation

x5 − 5x4 + 10x3 − 10x2 + 5x − 1 = 0

has unique solution x = 1.

Moreover, by the Fundamental Theorem of Algebra, equation (1) above al-
ways has between 1 and 5 distinct solutions (some possibly in C).
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Quintic Equations Radicals

When are you a radical?

We must clarify what we mean by ‘formula’.

Radical expressions
Consider the equation

xn + an−1xn−1 + an−2xn−2 + . . . a1x + a0 = 0,

where the coefficients a0,a1, . . .an−1 ∈ Q are rational.

A radical expression (over Q) is a quantity that can be built up from the co-
efficients a0,a1, . . . ,an−1, by applying the operations +, −, ×, /, and also nth
roots √, 3

√, 4
√, . . . .

The existence of the quadratic formula implies that the solutions of every quad-
ratic equation with rational coefficients are radical expressions. Likewise for the
cubic and quartic formulae.
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Quintic Equations Radicals

There is no quintic formula

If a quintic formula existed, then the solutions of every quintic equation with
rational coefficients would be radical expressions.

Example
Consider the quintic equation x5 − 6x + 3 = 0.

x

y

−2 2

−10

10

None of the three real solutions of this equation are radical expressions. Thus
there is no quintic formula. Nowadays this is proved using Galois Theory.
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Limitations of Algorithms Computers can’t do everything

Polynomial equations with integer solutions

Example
Consider the quadratic equation x2 + x − 2 = 0.

x

y

−2 1

−4

2

This equation has solutions x = −2 and x = 1.

However, if 4x2 − 4x − 15 = 0, then x = − 3
2 or x = 5

2 , so no integer solutions.

We can consider equations in several variables too. E.g. x2 + y2 − z2 = 0 has
infinitely many integer solutions (Pythagorean triples).
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Limitations of Algorithms Computers can’t do everything

Diophantine equations

Diophantine equations
Let p(x1, x2, . . . , xn) be a polynomial with integer coefficients. Then

p(x1, x2, . . . , xn) = 0,

for which integer solutions are sought is called a Diophantine equation.

Diophantine equations were introduced Diophantus of Alexandria, 3rd century
AD, and have been studied for hundreds of years. They can be hard to solve. . .

Fermat’s Last Theorem (Fermat 1637 (?!), Wiles 95)
Let k ≥ 3. Then the equation

xk + yk − zk = 0

has no (positive) integer solutions in x , y and z.
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Limitations of Algorithms Computers can’t do everything

Diophantine equations are very hard to solve. . .

The importance of solving Diophantine equations prompted Hilbert to include
it in his famous list of 23 unsolved problems, published in 1900.

Hilbert’s 10th Problem (1900)
Given a Diophantine equation with any number of unknown quantities and with
rational integral numerical coefficients: To devise a process according to
which it can be determined in a finite number of operations whether the
equation is solvable in rational integers.

In today’s language: is there is an algorithm or computer program which can,
upon input of any polynomial p(x1, . . . , xn) with integer coefficients, determine
whether p(x1, . . . , xn) = 0 has an integer solution or not?

Theorem (Matiyasevich 70)
No such algorithm exists!
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Limitations of Algorithms Turing Machines

Turing Machines

Turing machines are simple abstract computers, introduced at around the same
time by Alan Turing and Emil Post in 1936, to formalise the notion of ‘algorithm’.

Turing machines have two main parts: a memory (the input/output device) and
a processor.
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The processor has a scanner which can read from or write to a single cell of
the tape at a time, and which moves to the left or right one cell at a time.
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Limitations of Algorithms Turing Machines

Turing machines as computers

The successor machine S
S 0 1
0 0R1
1 1L2 1R1
2 1L2
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Turing machines as computers

The successor machine S
S 0 1
0 0R1
1 1L2 1R1
2 1L2

Given an input tape of the form

0 1 1 1 1 1 1 0 0 0 . . .

S returns the output tape

0 1 1 1 1 1 1 1 0 0 . . .
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Limitations of Algorithms Turing Machines

Turing machines as computers

The successor machine S
S 0 1
0 0R1
1 1L2 1R1
2 1L2

In general, S computes the successor function

n 7→ n + 1.
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Limitations of Algorithms Turing Machines

The Church-Turing Thesis

Despite the fact that Turing machines are extremely rudimentary objects, there
is overwhelming evidence to support the following statement. . .

The Church-Turing Thesis
Given any function

f : Nk → N

that is computable by algorithm, there is a Turing machine that computes f .

Two computable functions
1 The addition function (n,m) 7→ n + m is computable by a Turing machine.
2 The function that returns the nth digit of π is computable by a Turing ma-

chine.
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Limitations of Algorithms Turing Machines

Turing’s Halting Problem

Theorem (Turing 36)
There is a well-defined function h : N→ N that is not computable by algorithm.

There is an algorithm that assigns to each n ∈ N a Turing machine Tn, such
that the list T0,T1,T2,T3, . . . contains all Turing machines.

Define

h(n) =

{
0 if Tn halts, given input n
1 if Tn does not halt, given input n

If h were computable then, by the Church-Turing Thesis, it would be com-
putable by some Turing machine M. There is a machine that loops forever
given input 0, and halts given input 1. We combine machines to get T which

loops forever given input n if Tn halts given input n
halts given input n if Tn does not halt given input n.
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Limitations of Algorithms Turing Machines

Applications of the Halting Problem

We return to the Diophantine problem . . .

Theorem (Matiyasevich 70)
If there is an algorithm that solves all Diophantine equations, then Turing’s
halting function h above is computable by algorithm.

But Turing tells that h is not computable by algorithm, so there is no such
Diophantine algorithm!

There is no universal debugging program
There can never be a computer program which can automatically debug any
computer program that it receives as input.

This is even assuming arbitrary storage capacity or execution time!
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Undecidability Truth and Theorems

What is true and what is false?

To a mathematician, a mathematical statement is true if it can be proved, and
false if its negation can be proved.

Two mathematical statements
The number

√
2 is irrational.

There are only finitely many prime numbers.

The first statement is true because it can be proved.

The second statement is false because its negation can be proved.

Properly formulated mathematical statements are absolutely precise: the
statements contain no ambiguities which might confuse their truth or other-
wise.

Given their precision, it is reasonable to assume that any given mathematical
statement can be proved to be true or false, given sufficient time and effort.
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The number
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2 is irrational.

There are only finitely many prime numbers.

The first statement is true because it can be proved.

The second statement is false because its negation can be proved.
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Undecidability Undecidable statements

The Continuum Hypothesis (CH)

Hilbert’s 1st Problem (1900)
Let E be an uncountable set of real numbers. Is there a bijection

f : E → R?

The Continuum Hypothesis (CH) asserts that Hilbert’s 1st problem has a posi-
tive solution: if E is uncountable then a bijection f : E → R exists.
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Undecidability Undecidable statements

The Continuum Hypothesis (CH)

Hilbert’s 1st Problem (1900)
Let E be an uncountable set of real numbers. Is there a bijection

f : E → R?

The Continuum Hypothesis (CH) asserts that Hilbert’s 1st problem has a posi-
tive solution: if E is uncountable then a bijection f : E → R exists.

Theorem (Gödel 40)
There is no proof of the negation of CH.
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Undecidability Undecidable statements

The Continuum Hypothesis (CH)

Hilbert’s 1st Problem (1900)
Let E be an uncountable set of real numbers. Is there a bijection

f : E → R?

The Continuum Hypothesis (CH) asserts that Hilbert’s 1st problem has a posi-
tive solution: if E is uncountable then a bijection f : E → R exists.

Theorem (Gödel 40)
There is no proof of the negation of CH.

In other words, we cannot prove that CH is false. So CH must be true, right?
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Undecidability Undecidable statements

The Continuum Hypothesis (CH)

Hilbert’s 1st Problem (1900)
Let E be an uncountable set of real numbers. Is there a bijection

f : E → R?

The Continuum Hypothesis (CH) asserts that Hilbert’s 1st problem has a posi-
tive solution: if E is uncountable then a bijection f : E → R exists.

Theorem (Gödel 40)
There is no proof of the negation of CH.

In other words, we cannot prove that CH is false. So CH must be true, right?

Theorem (Cohen 63)
There is no proof of CH.
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Undecidability Undecidable statements

The Continuum Hypothesis (CH)

Hilbert’s 1st Problem (1900)
Let E be an uncountable set of real numbers. Is there a bijection

f : E → R?

The Continuum Hypothesis (CH) asserts that Hilbert’s 1st problem has a posi-
tive solution: if E is uncountable then a bijection f : E → R exists.

So is CH true or false. . . ?!
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Dramatis personae

Dramatis personæ

al-Khwārizmı̄
c. 780 – c. 850

Tartaglia
1499 – 1557

Cardano
1501 – 1576

Dr Richard Smith (maths.ucd.ie/~rsmith) Some interesting things that do not exist UCD, 14th October 2015 16 / 16

http://maths.ucd.ie/~rsmith


Dramatis personae

Dramatis personæ

Abel
1802 – 1829

Galois
1811 – 1832
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Dramatis personae

Dramatis personæ

Turing
1912 – 1954

Matiyasevich
1947 –

Wiles
1953 –

Dr Richard Smith (maths.ucd.ie/~rsmith) Some interesting things that do not exist UCD, 14th October 2015 16 / 16

http://maths.ucd.ie/~rsmith


Dramatis personae

Dramatis personæ

Cantor
1845 – 1918

Hilbert
1862 – 1943
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Dramatis personae

Dramatis personæ

Gödel
1906 – 1978

Cohen
1934 – 2007
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